skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhao, Nan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nodal aberration theory (NAT) is a vectorized aberration theory that was developed to describe systems without rotational symmetry. NAT predicts non-rotationally symmetric aberration field dependences for third-order astigmatism and in particular a “binodal” behavior in which there are two points in the field of view where astigmatism vanishes. This study serves to demonstrate an alignment technique based on an understanding of this binodal behavior using a custom Ritchey-Chretien telescope. A method involving a commercial Shack-Hartmann compact-format wavefront sensor was developed to rapidly measure densely sampled full-field displays of the telescope, which has its secondary mirror mounted on a precision hexapod to allow for repeatable control of the telescope alignment. Real ray-based simulations were carried out on a model of the telescope and were consistent with the observed experimental results for both aligned and misaligned states of the telescope. We then provide guidelines on how to interpret Fringe Zernike astigmatism full-field displays for use during optical system alignment. This method is particularly relevant for freeform systems, which often have asymmetric field dependencies for multiple aberration types including astigmatism. 
    more » « less
  2. Sea Island cotton ( Gossypium barbadense ) is world-renowned for its superior natural fiber. Although fiber strength is one of the most important fiber quality traits, genes contributing to fiber strength are poorly understood. Production of sea island cotton also is inextricably linked to improving its relatively low yield, thus enhancing the importance of joint improvement of both fiber quality and yield. We used genomic variation to uncover the genetic evidence of trait improvement resulting from pedigree breeding of Sea Island cotton. This pedigree was aimed at improving fiber strength and yielded an elite cultivar, XH35. Using a combination of genome-wide association study (GWAS) and selection screens, we detected 82 putative fiber-strength-related genes. Expression analysis confirmed a calmodulin-like gene, GbCML7 , which enhanced fiber strength in a specific haplotype. This gene is a major-effect gene, which interacts with a minor-effect gene, GbTUA3 , facilitating the enhancement of fiber strength in a synergistic fashion. Moreover, GbCML7 participates in the cooperative improvement of fiber strength, fiber length, and fiber uniformity, though a slight compromise exists between the first two of these traits and the latter. Importantly, GbCML7 is shown to boost yield in some backgrounds by increasing multiple yield components to varying degrees, especially boll number. Our work provides valuable genomic evidence and a key genetic factor for the joint improvement of fiber quality and yield in Sea Island cotton. 
    more » « less
  3. Abstract Mammalian cells are different from plant and microbial cells, having no exterior cell walls for protection. Environmental assaults can easily damage or destroy mammalian cells. Thus, the ability to develop a biomimetic cell wall (BCW) on their plasma membrane as a shield can advance various applications. Here we demonstrate the synthesis of BCW with a framing template and a crosslinked matrix for shielding live mammalian cells. The framing template is a supramolecular DNA structure. The crosslinked matrix is a polyelectrolyte complex made of alginate and polylysine. As the entire procedure of BCW synthesis is strictly operated under physiological conditions, BCW-covered mammalian cells can maintain high bioactivity. More importantly, the data show that BCW can shield live mammalian cells from not only physical assaults but also biological assaults. Thus, this study has successfully demonstrated the synthesis of BCW on live mammalian cells with great potential of shielding them from environmental assaults. 
    more » « less
  4. Abstract Graphene with a 3D porous structure is directly laser‐induced on lignocellulosic biopaper under ambient conditions and is further explored for multifunctional biomass‐based flexible electronics. The mechanically strong, flexible, and waterproof biopaper is fabricated by surface‐functionalizing cellulose with lignin‐based epoxy acrylate (LBEA). This composite biopaper shows as high as a threefold increase in tensile strength and excellent waterproofing compared with pure cellulose one. Direct laser writing (DLW) rapidly induces porous graphene from the biopaper in a single step. The porous graphene shows an interconnected carbon network, well‐defined graphene domains, and high electrical conductivity (e.g., ≈3 Ω per square), which can be tuned by lignin precursors and loadings as well as lasing conditions. The biopaper in situ embedded with porous graphene is facilely fabricated into flexible electronics for on‐chip and paper‐based applications. The biopaper‐based electronic devices, including the all‐solid‐state planer supercapacitor, electrochemical and strain biosensors, and Joule heater, show great performances. This study demonstrates the facile, versatile, and low‐cost fabrication of multifunctional graphene‐based electronics from lignocellulose‐based biopaper. 
    more » « less